Dual Equivalence Graphs and a Combinatorial Proof of Llt and Macdonald Positivity
نویسنده
چکیده
We make a systematic study of a new combinatorial construction called a dual equivalence graph. We axiomatize these graphs and prove that their generating functions are symmetric and Schur positive. By constructing a graph on ribbon tableaux which we transform into a dual equivalence graph, we give a combinatorial proof of the symmetry and Schur positivity of the ribbon tableaux generating functions introduced by Lascoux, Leclerc and Thibon. Using Haglund’s formula for the transformed Macdonald polynomials, this also gives a combinatorial formula for the Schur expansion of Macdonald polynomials.
منابع مشابه
Synopsis: Dual Equivalence Graphs, Ribbon Tableaux and Macdonald Polynomials
The primary focus of this dissertation is symmetric function theory. The main objectives are to present a new combinatorial construction which may be used to establish the symmetry and Schur positivity of a function expressed in terms of monomials, and to use this method to find a combinatorial description of the Schur expansion for two important classes of symmetric functions, namely LLT and M...
متن کاملThe Schur Expansion of Macdonald Polynomials
Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.
متن کاملDual equivalence graphs, ribbon tableaux and Macdonald polynomials
We make a systematic study of a new combinatorial construction called a dual equivalence graph. Motivated by the dual equivalence relation on standard Young tableaux introduced by Haiman, we axiomatize such constructions and prove that the generating functions of these graphs are Schur positive. We construct a graph on k-ribbon tableaux which we conjecture to be a dual equivalence graph, and we...
متن کاملShifted Dual Equivalence and Schur P -positivity
Dual equivalence puts a crystal-like structure on linear representations of the symmetric group that affords many nice combinatorial properties. In this talk, we extend this theory to type B, putting an analogous structure on projective representations of the symmetric group. On the level of generating functions, the type A theory gives a universal method for proving Schur positivity, and the t...
متن کاملApplications of Macdonald Polynomials
s for Talks Speaker: Nick Loehr (Virginia Tech, USA) (talk describes joint work with Jim Haglund and Mark Haiman) Title: Symmetric and Non-symmetric Macdonald Polynomials Abstract: Macdonald polynomials have played a central role in symmetric function theory ever since their introduction by Ian Macdonald in 1988. The original algebraic definitions of these polynomials are very nonexplicit and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014